
Nevertheless, the shielding effectiveness given in (10.2) can be broken into the
product of three terms each representing one of the phenomena of reflection loss,
absorption loss, and multiple reflections. In decibels these factors add to give

SEdB ¼ RdB þ AdB þMdB (10:4)

where R represents the reflection loss caused by reflection at the left and right
interfaces, A represents the absorption loss of the wave as it proceeds through the
barrier, and M represents the additional effects of multiple rereflections and trans-
missions. Observe that the rereflections will create fields that will add to the
initial field transmitted across the right interface. Thus the multiple-reflection
factor M will be a negative number and will, in general, reduce the shielding effec-
tiveness (since R and A will be positive). We now embark on a quantitative determi-
nation of these factors that contribute to the shielding effectiveness of a barrier. In
addition to the following derivations, the reader is referred to [3–5,10] for similar
developments.

10.2 SHIELDING EFFECTIVENESS: FAR-FIELD SOURCES

In this section we will assume that the source for the field that is incident on the
barrier is sufficiently distant from the barrier that the incident field resembles a
uniform plane wave, whose properties are discussed in Appendix B. We first deter-
mine the exact solution for the shielding effectiveness, and will then determine this
in an approximate fashion to show that the two methods yield the same results for
shields that are constructed from “good conductors” whose thickness t is much
greater than a skin depth at the frequency of the incident wave.

10.2.1 Exact Solution
In order to obtain the exact solution for the shielding effectiveness of a metallic
barrier, we solve the problem illustrated in Fig. 10.4. A conducting shield of thick-
ness t, conductivity s, permittivity e ¼ e0, and permeability m has an incident
uniform plane wave incident on its leftmost surface. The medium on either side
of the shield is assumed, for practical reasons, to be free space. A rectangular coor-
dinate system is used to define the problem, with the left surface lying in the xy plane
at z ¼ 0 and the right surface located at z ¼ t. Forward- and backward-traveling
waves are present in the left medium and in the shield according to the general prop-
erties of the solution of Maxwell’s equations. Only a forward-traveling wave is pos-
tulated in the medium to the right of the shield, since we reason that there is no
additional barrier to create a reflected field. The general forms of these fields are
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(see Section B6.2 and [9,10]):

~̂
Ei ¼ Êie

"jb0z~ax (10:5a)

~̂
Hi ¼

Êi

h0

e"jb0z~ay (10:5b)

~̂
Er ¼ Êre

jb0z~ax (10:5c)

~̂
Hr ¼ " Êr

h0

e jb0z~ay (10:5d)

~̂
E1 ¼ Ê1e

"ĝz~ax (10:5e)

~̂
H1 ¼

Ê1

ĥ
e"ĝz~ay (10:5f)

~̂
E2 ¼ Ê2e

ĝz~ax (10:5g)

~̂
H2 ¼ " Ê2

ĥ
eĝz~ay (10:5h)

~̂
Et ¼ Ête

"jb0z~ax (10:5i)

~̂
Ht ¼

Êt

h0

e"jb0z~ay (10:5 j)

where the phase constant and intrinsic impedance in the free-space regions are

b0 ¼ v
ffiffiffiffiffiffiffiffiffiffi
m0e0

p
(10:6a)

h0 ¼
ffiffiffiffiffiffi
m0

e0

r
(10:6b)

and the propagation constant and intrinsic impedance of the shield are

ĝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvm(sþ jve)

p

¼ aþ jb (10:7a)

ĥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvm

sþ jve

s

¼ h uh (10:7b)

The magnitude of the incident field Êi is assumed known. In order to determine
the remaining amplitudes Êr, Ê1, Ê2, and Êt, we need four equations. These are
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generated by enforcing the boundary conditions on the field vectors at the two
boundaries, z ¼ 0 and z ¼ t. Continuity of the tangential components of the electric
field at the two interfaces gives

~̂
Eijz¼0 þ

~̂
Erjz¼0 ¼

~̂
E1jz¼0 þ

~̂
E2jz¼0 (10:8a)

~̂
E1jz¼t þ

~̂
E2jz¼t ¼

~̂
Etjz¼t (10:8bÞ

Continuity of the tangential components of the magnetic field at the two interfaces
gives

~̂
Hijz¼0 þ

~̂
Hrjz¼0 ¼

~̂
H1jz¼0 þ

~̂
H2jz¼0 (10:9a)

~̂
H1jz¼t þ

~̂
H2jz¼t ¼

~̂
Htjz¼t (10:9b)

Substituting the forms given in (10.5) gives the required four equations as

Êi þ Êr ¼ Ê1 þ Ê2 (10:10a)

Ê1e
$ĝ t þ Ê2e

ĝ t ¼ Ête
$jb0t (10:10b)

Êi

h0

$ Êr

h0

¼ Ê1

ĥ
$ Ê2

ĥ
(10:10c)

Ê1

ĥ
e$ĝ t $ Ê2

ĥ
eĝ t ¼ Êt

h0

e$jb0t (10:10d)

Solving these equations gives the ratio of the incident and transmitted waves as [10]

Êi

Êt

¼ (h0 þ ĥ)2

4h0ĥ
1$ h0 $ ĥ

h0 $ ĥ

! "2

e$2t=de$j2bt

" #

et=de jbte$jb0t (10:11)

Equation (10.11) is the exact expression for the ratio of the electric field
that is incident on the boundary and the electric field that is transmitted through
the boundary. We have substituted the relation ĝ ¼ aþ jb from (10.7a) and also
a ¼ 1=d (assuming that the barrier material is a good conductor), where d is the
skin depth for the barrier material at the frequency of the incident wave:

d ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
p fms

p (10:12)

We can, however, make some reasonable approximations to reduce this to a
result derived by approximate means in the following sections. This will not only
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simplify the result but will also demonstrate that the same result can be derived by
approximate methods without any significant loss in accuracy, as we will do in the
next section.

In order to simplify (10.11), we will assume that the barrier is constructed from a
“good conductor,” so that the intrinsic impedance of the conductor is much less than
that of free space: ĥ ! h0: Therefore we may approximate

h0 " ĥ

h0 þ ĥ
ffi 1 (10:13)

Also we assume that the skin depth d is much less than the barrier thickness t. Thus

e"ĝ t ¼ e"ate"jbt

¼ e"t=de"jbt

! 1 for t & d (10:14)

Substituting these into the exact result given in (10.11) and taking the absolute value
of the result gives

Êi

Êt

!!!!!

!!!!! ¼
(h0 þ ĥ)2

4h0ĥ

!!!!

!!!!e
t=d

ffi h0

4ĥ

!!!!

!!!!e
t=d (10:15)Þ

Taking the logarithm of this result in order to express the shielding effectiveness in
dB in accordance with (10.2) gives

SEdB ffi 20 log10
h0

4ĥ

!!!!

!!!!
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

RdB

þ 20 log10 e
t=d

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
AdB

þMdB (10:16a)

The multiple-reflection loss in (10.4) is evidently the middle term of (10.11):

MdB ¼ 20 log10 1" h0 " ĥ

h0 þ ĥ

# $2

e"2t=de"j2bt

!!!!!

!!!!!

ffi 20 log10 j1" e"2t=de"j2t=dj (10:16b)

which can be neglected for shields that are constructed of good conductors, ĥ ! h0,
and whose thicknesses are much greater than a skin depth, t & d. We have also sub-
stituted b ¼ a ¼ 1/d, assuming the barrier is constructed from a good conductor.
(See Appendix B, Section B.6.4.) Observe that this term is of the form 1" Ĝ2

in,
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where Ĝin ¼ ½(h0 # ĥ)=(h0 þ ĥ)%e#2ĝ t is the reflection coefficient at the right bound-
ary referred to the left boundary. The multiple-reflection term is approximately unity
(MdB ’ 0) for barrier thicknesses that are thick compared with a skin depth, t & d,
and is of no consequence. However, for barrier thicknesses that are thin compared
with a skin depth, t ' d, the multiple-reflection factor is negative (in dB). In this
case, multiple reflections reduce the shielding effectiveness of the barrier. For
example, for t/d ¼ 0.1, Eq. (10.16b) gives MdB ¼ 211.8 dB.

The separation of the exact result into a component due to reflection, a com-
ponent due to absorption, and a component due to multiple reflections as in equation
(10.4) is evident in (10.16a). This result will be derived by approximate methods in
the following section.

10.2.2 Approximate Solution
We now consider deriving the previous result under the assumption that the barrier
is constructed of a good conductor, ĥ ' h0, and the barrier thickness is much
greater than a skin depth at the frequency of the incident wave, i.e., t & d. These
assumptions are usually inherent in a well-designed shield and thus are not restric-
tive from a practical standpoint. The basic idea is illustrated in Fig. 10.6. First, it is
worth noting that this approximate solution is analogous to the problem of analyzing
the overall gain of cascaded amplifiers. In that problem we compute the input impe-
dance of the first stage, using the input impedance of the second stage as the load
for the first. Then we can compute the ratio of the output voltage of the first stage
to its input voltage. Next we compute the ratio of the output voltage of the
second stage to its input voltage, using the input impedance of the third stage as
the load for the second stage. This process continues until we finally compute the
gain of the last stage. The overall gain of the cascade is then the product of the
gains of the individual stages. This technique takes into account the loading of
each stage on the preceding stage, and this loading generally cannot be neglected.
However, if the input impedances of the individual stages are quite large, as is gen-
erally the case for FET and vacuum-tube amplifiers, then this loading can be ignored
and the overall gain of the cascade can be computed as the gains of the individual,
isolated stages.

10.2.2.1 Reflection Loss The approximate analysis technique we will use is the
direct analogy of the method for analyzing cascaded amplifiers described above.
Assuming that the barrier thickness is much greater than a skin depth at the fre-
quency of the incident wave, the portion of the incident wave that is transmitted
across the left interface in Fig. 10.4, Ê1, is greatly attenuated by the time it
reaches the right interface. Thus the reflected wave Ê2, when it arrives at the left
interface, is not of much consequence and so contributes little to the total reflected
wave Êr. (Ê2 is also greatly attenuated as it travels from the second interface back to
the left interface). Therefore we can approximately compute the portion of the inci-
dent wave that is transmitted across the left interface, Ê1, by assuming that the
barrier is infinitely thick and therefore assuming that Ê2 ¼ 0. This then becomes
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the basic problem considered in Section 7.6.2 of Chapter 7, and is illustrated in
Fig. 10.6a. The transmission coefficient becomes

Ê1

Êi

ffi 2ĥ

h0 þ ĥ
(10:17)

The next basic problem occurs at the right interface, as illustrated in Fig. 10.6b, and
is again related to the basic problem considered in Section 7.6.2 of Chapter 7. The
transmission coefficient for this case gives

Êt

Ê1

ffi 2h0

h0 þ ĥ
(10:18)

Note that for this case the intrinsic impedance of the medium for the transmitted
wave is h0 and the intrinsic impedance for the incident wave is ĥ . For the first
half of this problem the intrinsic impedance of the medium for the transmitted
wave is ĥ and the intrinsic impedance for the incident wave is h0. Taking the
product of (10.17) and (10.18) gives the ratio of the transmitted field and the incident

FIGURE 10.6 Approximate calculation of shielding effectiveness for uniform plane waves.
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field in the absence of attenuation as

Êt

Êi

¼ Êt

Ê1

Ê1

Êi

¼ 2h0

h0 þ ĥ

2ĥ

h0 þ ĥ

¼ 4h0ĥ

(h0 þ ĥ)2
(10:19)

Note that because ĥ # h0, (10.17) is much smaller than (10.18). Thus the trans-
mission coefficient is very small at the first boundary, and is approximately two at
the second boundary. Thus very little of the electric field is transmitted through
the first (left) boundary. The reflection coefficient at the first (left) interface is
G1 ¼ (ĥ $ h0)=(ĥ þ h0) ffi $1, and the electric field is effectively “shorted out”
by the good conductor. The reflection coefficient at the second (right) boundary is
G2 ¼ (h0 $ ĥ)=(h0 þ ĥ) ffi þ1. These are analogous to the voltage reflections at
the end of a short-circuited (left boundary) or open-circuited (right boundary) trans-
mission line. Thus the majority of the electric field that is incident on each interface is
reflected. However, because very little of the electric field is transmitted through the
first boundary, it is of little consequence that the reflection coefficient at the second
boundary is approximately unity! The reflection loss term in (10.4) is therefore

RdB ¼ 20 log10
Êi

Êt

!!!!!

!!!!!

¼ 20 log10
(h0 þ ĥ)2

4h0ĥ

!!!!

!!!!

ffi 20 log10
h0

4ĥ

!!!!

!!!! (10:20)

where we have substituted the approximation ĥ # h0.
It is instructive to consider the magnetic field transmissions. Recall from Chapter

7 that the reflection and transmission coefficients were derived for the electric field
only, and could not be used for the magnetic field. If we wish to determine the
reflected and transmitted magnetic fields, we need to divide the electric fields by
the appropriate intrinsic impedances to give

Ĥ1

Ĥi

¼ Ê1=ĥ

Êi=h0

¼ Ê1

Êi

h0

ĥ

¼ 2h0

h0 þ ĥ
(10:21)
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Similarly, we obtain

Ĥt

Ĥ1

¼ Êt=h0

Ê1=ĥ

¼ Êt

Ê1

ĥ

h0

(10:22)

¼ 2ĥ

h0 þ ĥ

Taking the product of (10.21) and (10.22) gives the ratio of the transmitted and
incident magnetic field intensities:

Ĥt

Ĥi

¼ Ĥt

Ĥ1

Ĥ1

Ĥi

¼ 2ĥ

h0 þ ĥ

2h0

h0 þ ĥ
(10:23)

¼ 4h0ĥ

(h0 þ ĥ)2

Comparing (10.23) and (10.19) shows that the ratio of the transmitted and incident
electric fields are identical to the ratio of the transmitted and incident magnetic
fields. However, there is one important difference: the primary transmission of the
magnetic field occurs at the left interface, whereas the primary transmission of
the electric field occurs at the right interface. [See (10.17), (10.18), (10.21), and
(10.22).] Therefore the attenuation of the magnetic field as it passes through the
boundary is more important than is the attenuation of the electric field. This
points out that “thick” boundaries have more effect on shielding against magnetic
fields than electric fields (because of this attenuation of the magnetic field as it
travels through the boundary).

Since the primary transmission of the electric field occurs at the second boundary,
shield thickness is not of as much importance as it is for magnetic field shielding, in
which the primary transmission occurs at the first boundary. Attenuation of the
barrier is of more consequence in magnetic field shielding, since there is consider-
able transmission of the magnetic field at the first boundary. Therefore effective
shields for electric fields can be constructed from thin shields, which effectively
“short out” the electric field at the first boundary.

10.2.2.2 Absorption Loss This previous result assumed that the barrier thickness
was much greater than a skin depth, so that we could “uncouple” the calculation of
the reflections and transmissions at the two interfaces. However, in taking the
product of the two transmission coefficients as in (10.19), we are assuming that
Ê1 is the same amplitude at the left and right interfaces. But the magnitude of Ê1

at the right interface will be reduced substantially from its value at the left interface
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by the factor e!t=d. This attenuation can be easily accounted for—simply multiply
(10.19) by e!t=d. Thus the absorption factor accounting for attenuation becomes

A ¼ et=d (10:24)

In decibels this becomes

AdB ¼ 20 log10 e
t=d (10:25)

10.2.2.3 Multiple-Reflection Loss In the previous approximate calculations we
have assumed that any “secondary reflections” are of no consequence, since they
will have suffered substantial attenuation as they travel back and forth through
the barrier. If the barrier thickness is not much greater than a skin depth, as was
assumed, then the rereflections and transmissions may be important. This is particu-
larly true for magnetic fields, since the primary transmission occurs at the first
boundary, and thus these multiple reflections can be more significant for magnetic
field shielding. In the case of multiple reflections that are significant they are
accounted for with a multiple-reflection factor given in (10.16b) and illustrated in
Fig. 10.7a. The total transmitted electric field is the sum of the primary and second-
ary transmitted waves at the right interface as

Êt ¼ Êt1 þ Êt2 þ Êt3 þ $ $ $

¼ Êt1(1þ D2 þ D3 þ $ $ $ ) (10:26)

where Êt1 is the first electric field transmitted across the right interface which was
considered to be the total transmitted field in the previous approximate solution
that neglected these rereflections.

Consider the electric field transmitted across the left interface and incident on the
right interface, Êin, in Fig. 10.7. A portion of this is transmitted across the right inter-
face,

Êt1 ¼
2h0

h0 þ ĥ
Êin (10:27)

and a portion is reflected and sent back to the left interface,

Êr1 ¼
h0 ! ĥ

h0 þ ĥ
Êin (10:28)

These are obtained by multiplying by the transmission coefficient T̂ ¼
2h0=ðh0 þ ĥÞ and the reflection coefficient Ĝ ¼ ðh0 ! ĥÞ=ðh0 þ ĥÞ at the right
interface. (See Section 7.6.2.) The reflected wave Êr1 propagates back to the left
interface and in so doing suffers attention and phase shift, e!ĝ t. At this left interface
the incoming wave

Êr1e
!ĝ t
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is reflected as

h0 ! ĥ

h0 ! ĥ

! "
e!ĝ tEr1

and propagated back to the second interface. When it arrives there it has been again
multiplied by e!ĝ t by virtue of propagating through the barrier again. Hence this
second wave that is incident on the right interface is

h0 ! ĥ

h0 ! ĥ

! "
e!2ĝ tEr1

FIGURE 10.7 Illustration of the effect of multiple reflections within the barrier: (a)
combining multiple transmissions; (b) calculation in terms of reflection and transmission
coefficients.
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A portion of this is transmitted across the right interface as

Êt2 ¼
2h0

h0 þ ĥ

h0 # ĥ

h0 þ ĥ

! "
e#2ĝ tEr1

Substituting (10.27) and (10.28) gives Êt2 in terms of Êt1 as

Êt2 ¼
h0 # ĥ

h0 þ ĥ

! "2

e#2ĝ tÊt1

¼ D2Êt1 (10:29a)

where

D ¼ h0 # ĥ

h0 þ ĥ

! "
e#ĝ t (10:29b)

This continues giving the total transmitted electric field as

Êt ¼ Êt1(1þ D2 þ D4 þ $ $ $ )

¼ Êt1

(1# D2)
(10:30)

a summation that is valid for jDj , 1 as is the case here.
The shielding effectiveness is

SEdB ¼ 20 log10
Êi

Êt

#####

#####

¼ 20 log10
Êi

Êt1

#####

#####þ 20 log10 j1# D2j

¼ 20 log10
Êi

Êt1

#####

#####
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

RdB þAdB

þ 20 log10 1# h0 # ĥ

h0 þ ĥ

! "2

e#2ĝ t

#####

#####
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MdB

(10:31)

10.2.2.4 Total Loss Combining the results given above gives the three com-
ponents of the shielding effectiveness given in (10.4). The reflection loss is given
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in (10.20). Substituting the approximation for the intrinsic impedance of a good con-
ductor as

ĥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvm

sþ jve

s

¼
ffiffiffiffiffiffiffiffiffi
jvm

s

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ ð jve=sÞ

s
barrier is a

good conductor,
s=ve % 1

 !

(10:32)

ffi
ffiffiffiffiffiffiffiffiffi
jvm

s

r

¼
ffiffiffiffiffiffiffi
vm

s

r
45!

and

h0 ¼
ffiffiffiffiffiffi
m0

e0

r
(10:33)

into (10.20) gives

RdB ¼ 20 log10
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s

vmre0

r" #
(10:34)

where we have assumed m ¼ m0mr and e ¼ e0. For the conductivity of metals, it is
customary to refer to that of copper, which has a conductivity sCu ¼ 5.8 ' 107 S/m.
Thus the conductivity of other metals is written as s ¼ sCusr, where sr is the
conductivity relative to copper. Substituting this into (10.34) gives

RdB ¼ 168þ 10 log10
sr

mr f

" #
(10:35)

Observe that the reflection loss is greatest at low frequencies and for high-
conductivity metals. Similarly, magnetic materials, mr . 1, degrade the reflection
loss. The reflection loss decreases at a rate of 210 dB/decade with frequency. As
an example, consider a shield constructed of copper (mr ¼ 1). The reflection loss
at 1 kHz is 138 dB. At 10 MHz the reflection loss is 98 dB. On the other hand,
sheet steel has mr ¼ 1000 and sr ¼ 0.1. At 1 kHz the reflection loss is 98 dB, and
at 10 MHz it is reduced to 58 dB.
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The absorption loss is given by (10.25). This can also be simplified. The skin
depth is

d ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
pfms

p

¼ 0:06609ffiffiffiffiffiffiffiffiffiffiffiffiffi
fmrsr

p m

¼ 2:6ffiffiffiffiffiffiffiffiffiffiffiffiffi
fmrsr

p in.

¼ 2602
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fmrsr

p mils (10:36)

where we have written the result in various units. Substituting (10.36) into (10.25)
gives

AdB ¼ 20 log10 e
t=d

¼ 20t

d
log10 e

¼ 8:686t

d
(10:37)

¼ 131:4t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fmrsr

p
(t in meters)

¼ 3:338t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fmrsr

p
(t in inches)

Equation (10.37) shows that the absorption loss increases with increasing frequency
as

ffiffiffi
f

p
on a decibel scale. This is quite different from the absorption loss being pro-

portional to the square root of frequency so that it increases at a rate of 10 dB/
decade on a decibel scale. Therefore the absorption loss increases quite rapidly
with increasing frequency. Ferromagnetic materials where mr " 1 increase this
loss over copper (assuming that mrsr " 1). The absorption loss can also be under-
stood in terms of the thickness of the shield relative to a skin depth, as is evident in
(10.37):

AdB ¼ 8:686t

d

¼ 8:7 dB for
t

d
¼ 1

¼ 17:4 dB for
t

d
¼ 2 (10:38)

This illustrates the importance of skin depth in absorption loss.
Observe that the reflection loss is a function of the ratio sr/mr, whereas the

absorption loss is a function of the product srmr. Table 10.1 shows these factors
for various materials.
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Figure 10.8 shows the components of the shielding effectiveness for a 20 mil
thickness of copper as a function of frequency from 10 Hz to 10 MHz. Observe
that the absorption loss is dominant above 2 MHz. Figure 10.9 shows the same
data for steel (SAE 1045) for a 20 mil thickness. These data are plotted from
10 Hz to only 1 MHz. Note that for this material reflection loss dominates only
below 20 kHz. These data indicate that reflection loss is the primary contributor
to the shielding effectiveness at low frequencies for either ferrous or nonferrous
shielding materials. At the higher frequencies ferrous materials increase the absorp-
tion loss and the total shielding effectiveness. It is worthwhile reiterating that for
electric fields the primary transmission occurs at the second boundary, whereas
for magnetic fields it occurs at the first boundary, so that absorption is more import-
ant for the reduction of magnetic fields.

Review Exercise 10.1 Determine the reflection loss for aluminum, brass, and
stainless steel at 1 MHz.

Answers: 106 dB, 102 dB, and 64 dB.

Review Exercise 10.2 Determine the skin depth in mils for aluminum, brass, and
stainless steel at 1 MHz.

Answer: 3.33 mils, 5.1 mils, and 0.82 mils.

Review Exercise 10.3 Determine the absorption loss for 1
8 -in: (125-mils)-thick

aluminum, brass, and stainless-steel shields at 1 MHz.

Answer: 326 dB, 213 dB, and 1320 dB.

TABLE 10.1

Material sr mr A ! mrsr R ! sr=mr

Silver 1.05 1 1.05 1.05
Copper 1 1 1 1
Gold 0.7 1 0.7 0.7
Aluminum 0.61 1 0.61 0.61
Brass 0.26 1 0.26 0.26
Bronze 0.18 1 0.18 0.18
Tin 0.15 1 0.15 0.15
Lead 0.08 1 0.08 0.08
Nickel 0.2 600 120 3:3! 10"4

Stainless steel (430) 0.02 500 10 4! 10"5

Steel (SAE 1045) 0.1 1000 100 1! 10"4

Mumetal (at 1 kHz) 0.03 30,000 900 1! 10"6

Superpermalloy (at 1 kHz) 0.03 100,000 3000 3! 10"7
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10.3 SHIELDING EFFECTIVENESS: NEAR-FIELD SOURCES

The previous analysis of shielding effectiveness assumed a uniform plane wave
incident normal to the surface of the shield. This therefore assumes that the
shield is in the far field of the source of the incident field. In this section we
will consider near-field sources. We will find that the techniques for shielding
depend on the type of source; whether the source is a magnetic field source or
an electric field source. It must be pointed out that near fields are much more
complicated in structure than are far fields (which are simple and resemble
uniform plane waves). Hence, analysis of the effects of plane, conducting barriers
on near fields is a very complicated process. The reader is referred to the ongoing
analysis published in the literature. The near-field shielding for current loops is
analyzed in [6,7], whereas the near-field shielding for line current sources is ana-
lyzed in [8].

It is unreasonable to expect that simple and highly accurate formulas can be
obtained for near-field shielding as were obtained (exactly) for far-field shielding
in the preceding sections. The following results are approximations to the exact
results (which are very complicated). The heart of this approximate method is to
replace the intrinsic impedance of free space, h0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
, with the wave impe-

dance, Ẑw, for the Hertzian (electric) dipole and the small magnetic loop (dipole)
considered in Chapter 7. Although this is a somewhat crude approximation, it has

FIGURE 10.8 Shielding effectiveness of a 20 mil thickness of copper.
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